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Abs t rac t - -Given  three differently oriented boreholes intersecting the same structural fabric, the absolute 
orientation of that fabric can be calculated even when the azimuthal orientation of the core is unknown.  The true 
fabric is defined by the common intersection of at least three small circles, each of which represents  the cone of 
possible orientations for a core segment.  Potential pitfalls associated with automat ing this simple concept for the 
analysis of large data sets on a microcomputer  include incorporating the effect of  errors associated with 
measuring the fabric in the core, and the nature of the intersection between pairs of  small circles. These pitfalls 
can be overcome by following a procedure which uses a combination of min imum angular dispersion to select 
representative solutions, and eigenvector calculations to define the mean fabric and its associated error envelope. 

INTRODUCTION 

THE occurrence of many mineral deposits is intimately 
associated with local structural features. To obtain infor- 
mation about the variation of lithology and structure 
with depth, most mineral exploration programs depend 
upon the information that can be derived from the 
detailed logging of drill core. The intersection of an 
inclined planar fabric and a core will appear as an ellipse 
whose major axis marks the local fabric dip direction 
(Fig. 1). The problem of determining the absolute orien- 
tation of a fabric is complicated by a lack of information 
on the azimuthal orientation of each core segment. 
During recovery, the core may rotate in the core barrel. 
The orientation of the core segment relative to the 
geometry of the borehole is only rarely available. Few 
methods can provide the absolute orientation of the core 
(Goodman 1976, A. Bite personal communication 
1992). 

Three pieces of information are commonly available 
for each segment of core: the azimuth and plunge of the 
borehole at depth (which are obtained from a post- 
drilling survey of the open borehole),  and the maximum 
dip of the fabric in the core segment (which can be 
measured using a simple goniometer).  Possible orien- 
tations of the true attitude of the fabric define a small 
circle, centred on the borehole axis, with radius ~ (Fig. 
l). If two differently oriented boreholes intersect the 
same fabric, then points common to the two small circles 
provide estimates (solution poles) of the absolute fabric 
orientation. For any two small circles, there may be up 
to four possible intersections. With only two small 
circles it is not possible to choose which of these intersec- 
tions is valid. If three differently oriented boreholes 
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Fig. 1. Diagrammatic  representat ion of the relationship between the 
absolute orientation of a fabric and the core-pole angle as defined by 
the measurement  of inclination of the fabric relative to a segment  of 

core. 

intersect the same fabric, then for ideal data the three 
small circles will intersect at one common point, defining 
the pole to the fabric (Ragan 1985, pp. 297-312). 

In practice, natural data sets are rarely ideal. With 
real data, errors associated with the angular measure- 
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ments preclude the three small circles intersecting at a 
single common point. More probably the three small 
circles will define three close, but separate, intersec- 
tions. A more practical approach therefore would be to 
calculate for a given set of data all the intersections of all 
possible pairs of combinations of small circles. Problems 
with this approach include: (a) selection of the appropri- 
ate solution pole; (b) incorporating errors associated 
with angular measurements; and (c) determining a best 
estimate of the fabric orientation. 

P R O C E D U R E  

Outline 

The procedure as outlined in Table 1 contains a 
number of separate steps each of which addresses the 

problems identified above. The minimum requirement 
for the procedure is three observations of the same 
fabric from three differently oriented segments of core. 
Each observation comprises the azimuth and inclination 
of the borehole,  and the angle (q~) of the fabric relative 
to the axis of the core. For each pair of observations 
there are three possible types of small circle intersection: 
acute; tangential; and none. In Step 1 (solution pole 
calculation) all possible solution poles defined by the 
intersection of these small circles are calculated. The 
next step (solution pole selection) determines which 
pole from each solution set provides the best estimate of 
the true orientation of the fabric pole. In Step 3 (error 
estimate) the effects of errors associated with each 
orientation measurement are assessed. The final step 
(statistical analysis) involves the summation of all 
selected intersections to calculate the mean fabric 
vector. 
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Step 1--solution pole calculation 

Both Charlesworth & Kirby (1981) and Ragan (1985, 
p. 310) have presented procedures for calculating the 
intersections of two small circles. Our approach involves 
defining the equation of each small circle as the intersec- 
tion of a unit sphere with a plane normal to the borehole 
axis, whose distance from the centre of the sphere is 
dependent upon qX This intersection thus defines a small 
circle in terms of the azimuth and plunge of the bore- 
hole, and the core-pole angle q~. Combining the 
equations for two small circles yields a quadratic func- 
tion, which can have zero, one or two solutions. When 
the borehole plunge minus the core-pole angle q~ has a 
negative plunge (i.e. the small circle overlaps the primi- 
tive), it is necessary to consider the opposite end of the 
cone of solutions also. This will give rise to another 
possible zero, one or two solutions, bringing the total 
number of possible solutions to a maximum of four. For 
a data set with N samples, for which M have borehole 
plunge - q) < 0, the maximum number of intersections 
(possible solutions) can be calculated as follows: 

N- A,l M 

~ ( ( N - M ) - k ) x 2 +  2 ( N - k )  x 4  
k= l  k = l  

of which, 

N 

Z ( N -  k) 
k=l  

represent the true solution pole, 
spurious. 

(1) 

(2) 

and the rest are 

Step 2--solution pole selection 

To determine the mean orientation of the fabric pole, 
it is necessary to isolate the valid solutions from the 
spurious intersections. Ideally, the correct solution can 
be distinguished from its partner(s) by the fact that it lies 

within a cluster of other solutions, while its partner 's 
location is random. One possible selection criterion is to 
compute for each of the (up to four) intersection points 
the sum of the angular distance from that point to every 
other possible solution pole defined by all intersections. 
The angular distance sum will be a minimum for the 
point which lies closest to the cluster of data. 

Step 3--error estimation 

Errors, if randomly distributed, may affect both the 
orientation of the borehole axis and the magnitude of 
the core-pole angle. Together  these errors can signifi- 
cantly affect the accuracy with which it is possible to 
define the correct location of the solution pole. Factors 
moderating this effect depend upon: (a) the orientation 
of the two borehole segments relative to one another; 
and (b) the orientation of each of the boreholes relative 
to the measured fabric. The ideal condition is where the 
angular difference between the two boreholes is greater 
than =30 °, and where the two boreholcs a r c  not azimuth- 
ally collinear (having azimuths which differ by approxi- 
mately 0 ° or 180°). This produces an acute intersection 
between the two small circles. The location of possible 
solution poles in this situation are well constrained (Fig. 
2a). The reliability of the chosen solution pole can be 
defined by estimating the error associated with each 
directional observation. In general, borehole orien- 
tations are based on precise surveys. The major source of 
error is in measuring the fabric inclination. The core-pole 
angle error (A9) defines the maximum and minimum 
possible radii for the intersecting small circles. Calculat- 
ing the position of all of the intersections between the two 
small circles, and their maximum and minimum limits, 
gives nine estimates of the location of the solution pole 
(Fig. 2a). 

A worse case scenario occurs when the two boreholes 
have similar azimuths. In this situation the small circles 
will intersect tangentially at the pole to the fabric. Any 
error (i.e. where the measured q~ is too small, or too 
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Fig. 2. Diagrammatic  representat ion of calculation of possible solution poles from two boreholcs. (a) Acute mtcrscction 
between two differently oriented boreholes.  (b) Intersection of two azimuthally collincar boreholes, where measured 
values for ~01 and ~P2 do not initially define any intersections. Dashed circlc is the ¢ + A~p necessary to define a tangential 
intersection. (c) Intersection of two azimuthally collinear boreholes,  wherc mcasurcd values for ~Pl and q~ initially define 

two intersections. Shaded area defines the envelope of possible solutions. 
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large), will have a significant effect on the calculated 
position of the solution pole. If the measurement  of q~ is 
too small, the corresponding small circle will be too 
small, and may not intersect any other small circle 
(Table 1). There  will apparently be no valid solutions. 
This can be resolved by increasing the smaller ~p (q~l in 
Fig. 2b, for example)  by small increments until there is at 
least one intersection (~Pl + Aq~ in Fig. 2b), and vice 
versa for ~P2- These tangential fits give estimates of the 
true orientation of the fabric. The error limits on the 
orientation of the fabric can be determined by comput-  
ing all the possible intersections defined by systemati- 
cally decrementing and incrementing tPx and tp2 by 
At~lMa x and A~b2Max, respectively (Fig. 2b). 

Similarly, the measurement  of tp may be larger than 
the true q~. This case is more difficult to recognize since 
there will be at least two solution pole intersections. 
Superficially it could look like the acute intersection case 
outlined above. In this case, however,  the two calculated 
solution poles are located on opposite sides of the true 
fabric pole (Fig. 2c). Each of these solution poles is 
equally valid even though they may be quite divergent 
from the true fabric pole. Choosing either one of the two 
solution poles would introduce a systematic bias into the 
solution set. It is necessary to determine if this situation 
is in effect before proceeding to the selection process 
(Table 1). This pitfall can be dealt with in the same 
manner  as when tp is too small (Fig. 2c). 

If there are still no intersections after systematically 
incrementing and decrementing ~p, then the specimen 
should be re-examined. If upon re-examination, there 
are still no intersections this could indicate a change in 
the orientation of the fabric (Laing 1977). 

cipal eigenvalue will reflect the dispersion and number  
of intersections within a set. For tangential intersections 
the error ellipse defined by the eigenvector calculation 
will be larger than the actual envelope of possible 
solutions (Figs. 2b & c). Since these intersections pro- 
vide only broad estimates of the possible solution pole, 
we believe it is bet ter  to overest imate,  rather than 
underest imate the error associated with these points. A 
mean estimate of the orientation of the fabric pole is 
calculated by the summation of all the observation pair 
eigenvector solutions (Hext 1963, Woodcock 1977, Lei- 
nert 1991). Using the eigenvector method to first define 
the reliability of a single set of solutions, and then the 
orientation and error of the overall mean,  has the 
advantage that it can give differential weighting to 
solutions of varying quality. 

Data  sets that could be analysed using this procedure 
include multiple differently oriented, but univectorial 
boreholes,  or alternatively a single borehole which 
changes its orientation with depth. By solving for 
grouped depth intervals it may be possible to identify 
domains in the core which reflect the presence of either 
folds, faults or unconformities (Laing 1977). 
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